1,652 research outputs found

    Observations of Sy2 galaxy NGC 3281 by XMM-Newton and INTEGRAL satellites

    Get PDF
    We present here the results of our analysis of X-ray properties of Seyfert 2 galaxy NGC 3281, based on the observational data obtained by XMM-Newton and INTEGRAL within the energy ranges 0.2-12 keV and 20-150 keV, respectively. The XMM-Newton spectrum of this object is presented for the first time. We show that fitting the X-ray spectrum of this galaxy with models based on the reflection from the disc with infinite column density yields non-physical results. More appropriate fit takes into account both transmitted and reflected emission, passed through a gas-dusty torus-like structure. Keeping this in mind, to model the inhomogeneous clumpy torus, we used the MYTorus model. Hence, we propose that the torus of NGC 3281 is not continuous structure, but it consists of separate clouds, which is in a good agreement with the results of near-IR observations. Using this assumption, we found that the torus inclination angle and the hydrogen column density are 66.98^{+2.63}_{-1.34} degrees and 2.08^{+0.35}_{-0.18}x10^{24} cm^{-2}, respectively. Also, the emission of the hot diffuse gas with temperature ~590 eV and warm absorption were detected.Comment: 8 pages, 5 figures, 2 tables, accepted for publication in Advances in Astronomy and Space Physic

    Hydroxyl emission at high latitudes

    Get PDF
    Intensity and rotational temperature of hydroxyl emission at high latitudes during winte

    Twilight helium emission at high latitudes

    Get PDF
    Twilight helium emission at high latitudes during winte

    Grain refinement in a Cu-Cr-Zr alloy during multidirectional forging

    Get PDF
    Structural changes during plastic deformation were studied in a Cu-0.3%Cr-0.5%Zr alloy subjected to multidirectional forging up to a total strain of 4 at the temperatures of 300 K and 673 K. The deformation behavior was characterized by a rapid increase in the flow stress at an early deformation followed by a steady-state flow at large strain. The development of the new ultrafine grains resulted from the progressive increase in the misorientations of the strain-induced low-angle boundaries, which evolve into high-angle boundaries with increasing cumulative strain through a strain-induced continuous reaction that is quite similar to continuous dynamic recrystallizatio
    corecore